# Petersons's Solution

Peterson's Solution

Next, we illustrate a classic software-based solution to the critical-section problem known as Peterson's solution. Because of the way modern computer architectures perform basic machine-language instructions, such as load and store, there are no guarantees that Peterson's solution will work correctly on such architectures. However, we present the solution because it provides a good algorithmic description of solving the critical-section problem and illustrates some of the complexities involved in designing software that addresses the requirements of mutual exclusion, progress, and bounded waiting requirements. Peterson's solution is restricted to two processes that alternate execution between their critical sections and remainder sections. The processes are numbered Po and Pi. For convenience, when presenting P,-, we use Pj to denote the other process; that is, j equals 1 — i. Peterson's solution requires two data items to be shared between the two processes:

int turn;

boolean flag [2]

Topics You May Be Interested In
System Boot Log-structured File Systems
Operating System Generation Communication Protocols
Os Design And Implementation Rc 4000
Thread Libraries What Is The Security Problem?
Deadlock Characteristics The Mach Operating System

• The variable turn indicates whose turn it is to enter its critical section. That is, if turn == i, then process P; is allowed to execute in its critical section. The flag array is used to indicate if a process is ready to enter its critical section. For example, if f lag[i] is true, this value indicates that P; is ready to enter its critical section. With an explanation of these data structures complete, we are now ready to describe the algorithm shown in Figure 6,2.

To enter the critical section, process P, first sets flag[i] to be true and then sets turn to the value j, thereby asserting that if the other process wishes to enter the critical section, it can do so. If both processes try to enter at the same time, turn will be set to both i and j at roughly the same time. Only one of these assignments will last; the other will occur but will be overwritten immediately. The eventual value of turn decides which of the two processes is allowed to enter its critical section first. We now prove that this solution is correct. We need to show that:

1. Mutual exclusion is preserved.

Topics You May Be Interested In
File Sharing Stateful Versus Stateless Service
File System Mounting Streams
File System-efficiency And Performance What Is Compression In Mutimdedia?
Network Structure What Is Ibm Os/360?
Linux-input & Output What Is Concurrency Control?

2. The progress requirement is satisfied.

3. The bounded-waiting requirement is met.

To prove property 1, we note that each P; enters its critical section only if either flag[j] == false or turn -- i. Also note that, if both processes can be executing in their critical sections at the same time, then flag [0] == flag [1] == true. These two observations imply that Po and Pi could not have successfully executed their while statements at about the same time, since the value of turn can be either 0 or 1 but cannot be both. Hence, one of the processes —say Pj—must have successfully executed the while statement, whereas P, had to execute at least one additional statement ("turn == j"). However, since, at that time, f lag[j] == true, and turn == j, and this condition will persist as long as Pj is in its critical section, the result follows: Mutual exclusion is preserved.

To prove properties 2 and 3, we note that a process P, can be prevented from entering the critical section only if it is stuck in the while loop with the condition flag [j] == true and turn == j; this loop is the only one possible. If P; is not ready to enter the critical section, then flag [j] == false, and P; can enter its critical section. If Pj has set flag [j ] to true and is also executing in its while statement, then either turn == i or turn == j . If turn == i, then P, will enter the critical section. If turn == j, then Pj will enter the critical section. However, once P; exits its critical section, it will reset f lag[j] to false, allowing P, to enter its critical section. If Pj resets flag [j ] to true, it must also set turn to i. Thus, since P, does not change the value of the variable turn while executing the while statement, P,- will enter the critical section (progress) after at most one entry by P/ (bounded waiting).

Topics You May Be Interested In
Contiguous Memory Allocation Afs - Andrew File System
File System Structure What Is Compression In Mutimdedia?
Os Design And Implementation Multimedia- Network Management
Network Structure Distributed System-motivation

+
Ans: Thread Libraries A thread library provides the programmer an API for creating and managing threads. There are two primary ways of implementing a thread library. The first approach is to provide a library entirely in user space with no kernel support. All code and data structures for the library exist in user space. This means that invoking a function in the library results in a local function call in user space and not a system call. view more..
+
Ans: Thread Scheduling we introduced threads to the process model, distinguishing between user-level and kernel-level threads. On operating systems that support them, it is kernel-level threads—not processes—that are being scheduled by the operating system. User-level threads are managed by a thread library, and the kernel is unaware of them. To run on a CPU, user-level threads must ultimately be mapped to an associated kernel-level thread, although this mapping may be indirect and may use a lightweight process (LWP). In this section, we explore scheduling issues involving user-level and kernel-level threads and offer specific examples of scheduling for Pthreads. view more..
+
Ans: Scheduling Criteria Different CPU scheduling algorithms have different properties, and the choice of a particular algorithm may favor one class of processes over another. In choosing which algorithm to use in a particular situation, we must consider the properties of the various algorithms. Many criteria have been suggested for comparing CPU scheduling algorithms. Which characteristics are used for comparison can make a substantial difference in which algorithm is judged to be best. The criteria include the following: • CPU utilization. We want to keep the CPU as busy as possible. Conceptually, CPU utilization can range from 0 to 100 percent. In a real system, it should range from 40 percent (for a lightly loaded system) to 90 percent (for a heavily used system). view more..
+
Ans: we illustrate a classic software-based solution to the critical-section problem known as Peterson's solution. Because of the way modern computer architectures perform basic machine-language instructions, such as load and store, there are no guarantees that Peterson's solution will work correctly on such architectures. However, we present the solution because it provides a good algorithmic description of solving the critical-section problem and illustrates some of the complexities involved in designing software that addresses the requirements of mutual exclusion, progress, and bounded waiting requirements. Peterson's solution is restricted to two processes that alternate execution between their critical sections and remainder sections. The processes are numbered Po and Pi. view more..
+
Ans: Synchronization Hardware We have just described one software-based solution to the critical-section problem. In general, we can state that any solution to the critical-section problem requires a simple tool—a lock. Race conditions are prevented by requiring that critical regions be protected by locks. That is, a process must acquire a lock before entering a critical section; it releases the lock when it exits the critical section. view more..
+
Ans: System Model A system consists of a finite number of resources to be distributed among a number of competing processes. The resources are partitioned into several types, each consisting of some number of identical instances. Memory space, CPU cycles, files, and I/O devices (such as printers and DVD drives) are examples of resource types. If a system has two CPUs, then the resource type CPU has two instances. Similarly, the resource type printer may have five instances. If a process requests an instance of a resource type, the allocation of any instance of the type will satisfy the request. If it will not, then the instances are not identical, and the resource type classes have not been defined properly. view more..
+
Ans: Deadlock Characterization In a deadlock, processes never finish executing, and system resources are tied up, preventing other jobs from starting. Before we discuss the various methods for dealing with the deadlock problem, we look more closely at features that characterize deadlocks. view more..
+
Ans: Atomicity We introduced the concept of an atomic transaction, which is a program unit that must be executed atomically. That is, either all the operations associated with it are executed to completion, or none are performed. When we are dealing with a distributed system, ensuring the atomicity of a transaction becomes much more complicated than in a centralized system. This difficulty occurs because several sites may be participating in the execution of a single transaction. The failure of one of these sites, or the failure of a communication link connecting the sites, may result in erroneous computations. Ensuring that the execution of transactions in the distributed system preserves atomicity is the function of the transaction coordinator. Each site has its own local transaction coordinator, which is responsible for coordinating the execution of all the transactions initiated at that site. view more..
+
+
Ans: Disk Attachment Computers access disk storage in two ways. One way is via I/O ports (or host-attached storage); this is common on small systems. The other way is via a remote host in a distributed file system; this is referred to as network-attached storage. view more..
+
Ans: Memory-Mapped Files Consider a sequential read of a file on disk using the standard system calls openQ, readO, and writeQ. Each file access requires a system call and disk access. Alternatively, we can use the virtual memory techniques discussed so far to treat file I/O as routine memory accesses. This approach, known as memory mapping a file, allows a part of the virtual address space to be logically associated with the file. view more..
+
Ans: Efficiency and Performance Now that we have discussed various block-allocation and directorymanagement options, we can further consider their effect on performance and efficient disk use. Disks tend to represent a major bottleneck in system performance, since they are the slowest main computer component. In this section, we discuss a variety of techniques used to improve the efficiency and performance of secondary storage. view more..
+
Ans: Recovery Files and directories are kept both in main memory and on disk, and care must taken to ensure that system failure does not result in loss of data or in data inconsistency. view more..
+
Ans: Log-Structured File Systems Computer scientists often find that algorithms and technologies originally used in one area are equally useful in other areas. Such is the case with the database log-based recovery algorithms described in Section 6.9.2. These logging algorithms have been applied successfully to the problem of consistency checking. The resulting implementations are known as log-based transaction-oriented (or journaling) file systems. view more..
+
Ans: Example: The WAFL File System Disk I/O has a huge impact on system performance. As a result, file-system design and implementation command quite a lot of attention from system designers. Some file systems are general purpose, in that they can provide reasonable performance and functionality for a wide variety of file sizes, file types, and I/O loads. Others are optimized for specific tasks in an attempt to provide better performance in those areas than general-purpose file systems. view more..
+
Ans: Network Structure There are basically two types of networks: local-area networks (LAN) and wide-area networks (WAN). The main difference between the two is the way in which they are geographically distributed. Local-area networks are composed of processors distributed over small areas (such as a single building? or a number of adjacent buildings), whereas wide-area networks are composed of a number of autonomous processors distributed over a large area (such as the United States). These differences imply major variations in the speed and reliability of the communications network, and they are reflected in the distributed operating-system design. view more..
+
Ans: Network Topology The sites in a distributed system can be connected physically in a variety of ways. Each configuration has advantages and disadvantages. We can compare the configurations by using the following criteria: • Installation cost. The cost of physically linking the sites in the system • Communication cost. The cost in time and money to send a message from site A to site B 16.4 Network Topology 621 • Availability. The extent to which data can be accessed despite the failure of some links or sites view more..
+
Ans: Revocation of Access Rights In a dynamic protection system, we may sometimes need to revoke access rights to objects shared by different users view more..

Rating - 3/5
510 views