What is Election Algorithms ?




Election Algorithms

Many distributed algorithms employ a coordinator process that performs functions needed by the other processes in the system. These functions include enforcing mutual exclusion, maintaining a global wait-for graph for deadlock detection, replacing a lost token, and controlling an input or output device in the system. If the coordinator process fails due to the failure of the site at which it resides, the system can continue only by restarting a new copy of the coordinator on some other site.

The algorithms that determine where a new copy of the coordinator should be restarted are called election algorithms. Election algorithms assume that a unique priority number is associated with each active process in the system. For ease of notation, we assume that the priority number of process P, is /. To simplify our discussion, we assume a one-to-one correspondence between processes and sites and thus refer to both as processes.

The coordinator is always the process with the largest priority number. Hence, when a coordinator fails, the algorithm must elect that active process with the largest priority number. This number must be sent to each active process in the system. In addition, the algorithm must provide a mechanism for a recovered process to identify the current coordinator. In this section, we present examples of election algorithms for two different configurations of distributed systems.

 The first algorithm applies to systems where every process can send a message to every other process in the system. The second algorithm applies to systems organized as a ring (logically or physically). Both algorithms require n 2 messages for an election, where n is the number of processes in the system. We assume that a process that has failed knows on recovery that it has indeed failed and thus takes appropriate actions to rejoin the set of active processes

The Bully Algorithm

Suppose that process P; sends a request that is not answered by the coordinator within a time interval T. In this situation, it is assumed that the coordinator has failed, and P; tries to elect itself as the new coordinator. This task is completed through the following algorithm, Process P; sends an election message to every process with a higher priority number. Process P, then waits for a time interval T for an answer from any one of these processes. If no response is received within time T, P,- assumes that all processes with numbers greater than / have failed and elects itself the new coordinator.

 Process P; restarts a new copy of the coordinator and sends a message to inform all active processes with priority numbers less than; that P,- is the new coordinator. However, if an answer is received, P, begins a time interval T, waiting to receive a message informing it that a process with a higher priority number has been elected. (That is, some other process is electing itself coordinator and should report the results within time T.)

 If no message is sent within T, then the process with a higher number is assumed to have failed, and process P, should restart the algorithm. If Pi is not the coordinator, then, at any time during execution, P,- may receive one of the following two messages from process P,:

1. Pj is the new coordinator (j > /). Process P,, in turn, records this information.

Topics You May Be Interested In
System Calls File System Example
Allocation Of Frames User Authentication
Disk Scheduling What Is The Wafl File System?
Os Design And Implementation What Is Multimedia?
File System-efficiency And Performance How Is Cpu Scheduling Done In Multimedia Systems?

2. Pj has started an election (j < i). Process P,- sends a response to Pj and begins its own election algorithm, provided that P, has not already initiated such an election. The process that completes its algorithm has the highest number and is elected as the coordinator. It has sent its number to all active processes with smaller.

 After a failed process recovers, it immediately begins execution of the same algorithm. If there are no active processes with higher numbers, the recovered process forces all processes with lower numbers to let it become the coordinator process, even if there is a currently active coordinator with a lower number.

For this reason, the algorithm is termed the bully algorithm. We can demonstrate the operation of the algorithm with a simple example of a system consisting of processes Pi through Pj. The operations are as follows:

1. All processes are active; P4 is the coordinator process.

 2. PT and P4 fail. P2 determines that P4 has failed by sending a request that is not answered within time T. P2 then begins its election algorithm by sending a request to P3.

3. P3 receives the request, responds to P2, and begins its own algorithm by sending an election request to P4.

4. Pi receives Pa's response and begins waiting for an interval T'.

5. Pi does not respond within an interval T, so P3 elects itself the new coordinator and sends the number 3 to P2 and Pi. (Pi does not receive the number, since it has failed.) 6. Later, when P] recovers, it sends an election request to P?, P3, and P4. 7. P2 and P3 respond to Pi and begin their own election algorithms. P3 will again be elected, through the same events as before. 8. Finally, P4 recovers and notifies Pi, Pj, and P3 that it is the current coordinator. (P4 sends no election requests, since it is the process with the highest number in the system.)

The Ring Algorithm

 The ring algorithm assumes that the links are unidirectional and that each process sends its messages to the neighbor on the right. The main data structure used by the algorithm is the active list, a list that contains the priority numbers of all active processes in the system when the algorithm ends; each process maintains its own active list. The algorithm works as follows:

Topics You May Be Interested In
Instruction Execution Free Space Management
System Calls Capability-based Systems
Operating System Operations- Dual-mode Operation, Timer Stateful Versus Stateless Service
Multithreading Models An Example: Networking
Thrashing Requirements Of Multimedia Kernels

 1. If process P; detects a coordinator failure, it creates a new active list that is initially empty. It then sends a message elect(i) to its right neighbor and adds the number / to its active list.

2. If Pj receives a message electij) from the process on the left, it must respond in one of three ways: a. If this is the first elect message it has seen or sent, P, creates a new active list with the numbers i and;. It then sends the message ekct(i), followed by the message elect(j). b. If i # /—that is, the message received does not contain P.'s number —then Pj adds / to its active list and forwards the message to its right neighbor. c. If / = /—that is, Pi receives the message eled(i)—then the active list for P now contains the numbers of all the active processes in the system.

Process P; can now determine the largest number in the active list to identify the new coordinator process. This algorithm does not specify how a recovering process determines the number of the current coordinator process. One solution requires a recovering process to send an inquiry message. This message is forwarded around the ring to the current coordinator, which in turn sends a reply containing its number.



Frequently Asked Questions

+
Ans: Access Matrix Our model of protection can be viewed abstractly as a matrix, called an access matrix. The rows of the access matrix represent domains, and the columns represent objects. Each entry in the matrix consists of a set of access rights. Because the column defines objects explicitly, we can omit the object name from the access right. The entry access(/,/) defines the set of operations that a process executing in domain Dj can invoke on object . view more..
+
Ans: History In the mid-1980s, Microsoft and IBM cooperated to develop the OS/2 operating system, which was written in assembly language for single-processor Intel 80286 systems. In 1988, Microsoft decided to make a fresh start and to develop a "new technology" (or NT) portable operating system that supported both the OS/2 and POSIX application-programming interfaces (APIs). view more..
+
Ans: Mach The Mach operating system traces its ancestry to the Accent operating system developed at Carnegie Mellon University (CMU) (Rashid and Robertson [1981]). Mach's communication system and philosophy are derived from Accent, but many other significant portions of the system (for example, the virtual memory system, task and thread management) were developed from scratch (Rashid [1986], Tevanian et al. [1989], and Accetta et al. [1986]). The Mach scheduler was described in detail by Tevanian et al. [1987a] and Black [1990]. view more..
+
Ans: Election Algorithms Many distributed algorithms employ a coordinator process that performs functions needed by the other processes in the system. These functions include enforcing mutual exclusion, maintaining a global wait-for graph for deadlock detection, replacing a lost token, and controlling an input or output device in the system. If the coordinator process fails due to the failure of the site at which it resides, the system can continue only by restarting a new copy of the coordinator on some other site. The algorithms that determine where a new copy of the coordinator should be restarted are called election algorithms. Election algorithms assume that a unique priority number is associated with each active process in the system. For ease of notation, we assume that the priority number of process P, is /. To simplify our discussion, we assume a one-to-one correspondence between processes and sites and thus refer to both as processes. view more..
+
Ans: Reaching Agreement For a system to be reliable, we need a mechanism that allows a set of processes to agree on a common value. Such an agreement may not take place, for several reasons. First, the communication medium may be faulty, resulting in lost or garbled messages. Second, the processes themselves may be faulty, resulting in unpredictable process behavior. The best we can hope for in this case is that processes fail in a clean way, stopping their execution without deviating from their normal execution pattern. In the worst case, processes may send garbled or incorrect messages to other processes or even collaborate with other failed processes in an attempt to destroy the integrity of the system. view more..
+
Ans: Atomicity We introduced the concept of an atomic transaction, which is a program unit that must be executed atomically. That is, either all the operations associated with it are executed to completion, or none are performed. When we are dealing with a distributed system, ensuring the atomicity of a transaction becomes much more complicated than in a centralized system. This difficulty occurs because several sites may be participating in the execution of a single transaction. The failure of one of these sites, or the failure of a communication link connecting the sites, may result in erroneous computations. Ensuring that the execution of transactions in the distributed system preserves atomicity is the function of the transaction coordinator. Each site has its own local transaction coordinator, which is responsible for coordinating the execution of all the transactions initiated at that site. view more..
+
Ans: Concurrency Control We move next to the issue of concurrency control. In this section, we show how certain of the concurrency-control schemes discussed in Chapter 6 can be modified for use in a distributed environment. The transaction manager of a distributed database system manages the execution of those transactions (or subtransactions) that access data stored in a local site. Each such transaction may be either a local transaction (that is, a transaction that executes only at that site) or part of a global transaction (that is, a transaction that executes at several sites). Each transaction manager is responsible for maintaining a log for recovery purposes and for participating in an appropriate concurrency-control scheme to coordinate the conciirrent execution of the transactions executing at that site. As we shall see, the concurrency schemes described in Chapter 6 need to be modified to accommodate the distribution of transactions. view more..
+
Ans: Features of Real-Time Kernels In this section, we discuss the features necessary for designing an operating system that supports real-time processes. Before we begin, though, let's consider what is typically not needed for a real-time system. We begin by examining several features provided in many of the operating systems discussed so far in this text, including Linux, UNIX, and the various versions of Windows. These systems typically provide support for the following: • A variety of peripheral devices such as graphical displays, CD, and DVD drives • Protection and security mechanisms • Multiple users Supporting these features often results in a sophisticated—and large—kernel. For example, Windows XP has over forty million lines of source code. view more..
+
Ans: Implementing Real-Time Operating Systems Keeping in mind the many possible variations, we now identify the features necessary for implementing a real-time operating system. This list is by no means absolute; some systems provide more features than we list below, while other systems provide fewer. • Preemptive, priority-based scheduling • Preemptive kernel • Minimized latency view more..
+
Ans: VxWorks 5.x In this section, we describe VxWorks, a popular real-time operating system providing hard real-time support. VxWorks, commercially developed by Wind River Systems, is widely used in automobiles, consumer and industrial devices, and networking equipment such as switches and routers. VxWorks is also used to control the two rovers—Spirit and Opportunity—that began exploring the planet Mars in 2004. The organization of VxWorks is shown in Figure 19.12. VxWorks is centered around the Wind microkernel. Recall from our discussion in Section 2.7.3 that microkernels are designed so that the operating-system kernel provides a bare minimum of features; additional utilities, such as networking, file systems, and graphics, are provided in libraries outside of the kernel. This approach offers many benefits, including minimizing the size of the kernel—a desirable feature for an embedded system requiring a small footprint view more..
+
Ans: Mutual Exclusion In this section, we present a number of different algorithms for implementing mutual exclusion in a distributed environment. We assume that the system consists of n processes, each of which resides at a different processor. To simplify our discussion, we assume that processes are numbered uniquely from 1 to n and that a one-to-one mapping exists between processes and processors (that is, each process has its own processor). view more..
+
Ans: Event Ordering In a centralized system, we can always determine the order in which two events occurred, since the system has a single common memory and clock. Many applications may require us to determine order. For example, in a resourceallocation scheme, we specify that a resource can be used only after the resource has been granted. A distributed system, however, has no common memory and no common clock. Therefore, it is sometimes impossible to say which of two events occurred first. The liappened-before relation is only a partial ordering of the events in distributed systems. Since the ability to define a total ordering is crucial in many applications, we present a distributed algorithm for exterding the happened-before relation to a consistent total ordering of all the events in the system. view more..
+
Ans: Types of System Calls System calls can be grouped roughly into five major categories: process control, file manipulation, device manipulation, information maintenance, and communications. In Sections 2.4.1 through 2.4.5, we discuss briefly the types of system calls that may be provided by an operating system. view more..
+
Ans: Overview of Mass-Storage Structure In this section we present a general overview of the physical structure of secondary and tertiary storage devices. view more..
+
Ans: Atomic Transactions The mutual exclusion of critical sections ensures that the critical sections are executed atomically. That is, if two critical sections are executed concurrently, the result is equivalent to their sequential execution in some unknown order. Although this property is useful in many application domains, in many cases we would like to make sure that a critical section forms a single logical unit of work that either is performed in its entirety or is not performed at all. An example is funds transfer, in which one account is debited and another is credited. Clearly, it is essential for data consistency either that both the credit and debit occur or that neither occur. Consistency of data, along with storage and retrieval of data, is a concern often associated with database systems. Recently, there has been an upsurge of interest in using database-systems techniques in operating systems. view more..
+
Ans: Programmer Interface The Win32 API is the fundamental interface to the capabilities of Windows XP. This section describes five main aspects of the Win32 API: access to kernel objects, sharing of objects between processes, process management, interprocess communication, and memory management. view more..
+
Ans: Memory Management The main memory is central to the operation of a modern computer system. Main memory is a large array of words or bytes, ranging in size from hundreds of thousands to billions. Each word or byte has its own address. Main memory is a repository of quickly accessible data shared by the CPU and I/O devices. The central processor reads instructions from main memory during the instruction-fetch cycle and both reads and writes data from main memory during the data-fetch cycle (on a Von Neumann architecture). The main memory is generally the only large storage device that the CPU is able to address and access directly. view more..
+
Ans: Storage Management To make the computer system convenient for users, the operating system provides a uniform, logical view of information storage. The operating system abstracts from the physical properties of its storage devices to define a logical storage unit, the file. The operating system maps files onto physical media and accesses these files via the storage devices view more..




Rating - 4/5
539 views

Advertisements