Summary of Process




Summary

 A process is a program in execution. As a process executes, it changes state. The state of a process is defined by that process's current activity. Each process may be in one of the following states: new, ready, running, waiting, or terminated.

Each process is represented in the operating system by its own process-control block (PCB). A process, when it is not executing, is placed in some waiting queue. There are two major classes of queues in an operating system: I/O request queues and the ready queue. The ready queue contains all the processes that areteady to execute and are waiting for the CPU. Each process is represented by a PCB, and the PCBs can be linked together to form a ready queue.

Long-term (job) scheduling is the selection of processes that will be allowed to contend for the CPU. Normally, long-term scheduling is heavily influenced by resourceallocation considerations, especially memory management. Short-term (CPU) scheduling is the selection of one process from the ready queue. Operating systems must provide a mechanism for parent processes to create new child processes.

Topics You May Be Interested In
Microkernel Architecture Of Operating System What Is The Security Problem?
File Sharing Mutual Exclusion
Operating System Services Introduction To Memory Management
An Example: Cineblitz Summary Of Os Structures
The Operating System Distributed System-motivation

Summary of Process

 The parent may wait for its children to terminate before proceeding, or the parent and children may execute concurrently. There are several reasons for allowing concurrent execution: information sharing, computation speedup, modularity, and convenience. The processes executing in the operating system may be either independent processes or cooperating processes. Cooperating processes require an interprocess communication mechanism to communicate with each other. Principally, communication is achieved through two schemes: shared memory and message passing. The shared-memory method requires communicating processes to share some variables.

 The processes are expected to exchange information through the use of these shared variables. In a shared-memory system, the responsibility for providing communication rests with the application programmers; the operating system needs to provide only the shared memory. The message-passing method allows the processes to exchange messages. The responsibility for providing communication may rest with the operating system itself. These two schemes are not mutually exclusive and can be used simultaneously within a single operating system. Communication in client-server systems may use (1) sockets, (2) remote procedure calls (RPCs), or (3) Java's remote method invocation (RMI). A socket is defined as an endpoint for communication.

A connection between a pair of applications consists of a pair of sockets, one at each end of the communication channel. RPCs are another form of distributed communication. An RPC occurs when a process (or thread) calls a procedure on a remote application. RMI is the Java version of RPCs. RMI allows a thread to invoke a method on a remote object just as it would invoke a method on a local object. The primary distinction between RPCs and RMI is that in RPCs data are passed to a remote procedure in the form of an ordinary data structure, whereas RMI allows objects to be passed in remote method calls

Topics You May Be Interested In
Instruction Execution An Example-windows Xp
Operating System Services Linux History
Deadlock Recovery Afs - Andrew File System
Special Purpose Systems What Is The Security Problem?
Disk Attachment Introduction To Protection And Security


Frequently Asked Questions

+
Ans: Summary A deadlock state occurs when two or more processes are waiting indefinitely for an event that can be caused only by one of the waiting processes. There are three principal methods for dealing with deadlocks: • Use some protocol to prevent or avoid deadlocks, ensuring that the system, will never enter a deadlock state. • Allow the system to enter a deadlock state, detect it, and then recover. • Ignore the problem altogether and pretend that deadlocks never occur in the system. The third solution is the one used by most operating systems, including UNIX and Windows view more..
+
Ans: Microsoft designed Windows XP to be an extensible, portable operating system —one able to take advantage of new techniques and hardware. Windows XP supports multiple operating environments and symmetric multiprocessing, including both 32-bit and 64-bit processors and NUMA computers. view more..
+
Ans: Summary Disk drives are the major secondary-storage I/O devices on most computers. Most secondary storage devices are either magnetic disks or magnetic tapes. Modern disk drives are structured as a large one-dimensional array of logical disk blocks which is usually 512 bytes. Disks may be attached to a computer system in one of two ways: (1) using the local I/O ports on the host computer or (2) using a network connection such as storage area networks. view more..
+
Ans: Summary A process is a program in execution. As a process executes, it changes state. The state of a process is defined by that process's current activity. Each process may be in one of the following states: new, ready, running, waiting, or terminated. view more..
+
Ans: Summary A file is an abstract data type defined and implemented by the operating system. It is a sequence of logical records. A logical record may be a byte, a line (of fixed or variable length), or a more complex data item. The operating system may specifically support various record types or may leave that support to the application program. view more..
+
Ans: Summary Memory-management algorithms for multiprogrammed operating systems range from the simple single-user system approach to paged segmentation. The most important determinant of the method used in a particular system is the hardware provided. view more..




Rating - 3/5
547 views

Advertisements