Concurrency




 

Both services and applications provide resources that can be shared by clients in a distributed system. There is, therefore, a possibility that several clients will attempt to access a shared resource at the same time. For example, a data structure that records bids for an auction may be accessed very frequently when it gets close to the deadline time.
The process that manages a shared resource could take one client request at a time. But that approach limits throughput. Therefore services and applications generally allow multiple client requests to be processed concurrently. To make this more concrete, suppose that each resource is encapsulated as an object and that invocations are executed in concurrent threads. In this case it is possible that several threads may be executing concurrently within an object, in which case their operations on the object may conflict with one another and produce inconsistent results. For example, if two concurrent bids at an auction are ‘Smith: $122’ and ‘Jones: $111’, and the corresponding operations are interleaved without any control, then they might get stored as ‘Smith: $111’ and ‘Jones: $122’.
The moral of this story is that any object that represents a shared resource in a distributed system must be responsible for ensuring that it operates correctly in a concurrent environment. This applies not only to servers but also to objects in applications. Therefore any programmer who takes an implementation of an object that
was not intended for use in a distributed system must do whatever is necessary to make it safe in a concurrent environment.
For an object to be safe in a concurrent environment, its operations must be synchronized in such a way that its data remains consistent. This can be achieved by standard techniques such as semaphores, which are used in most operating systems.

 



Frequently Asked Questions

+
Ans: Failures in a distributed system are partial – that is, some components fail while others continue to function. Therefore the handling of failures is particularly difficult. The following techniques for dealing with failures are discussed throughout the book view more..
+
Ans: ly and efficiently at many different scales, ranging from a small intranet to the Internet. A system is described as scalable if it will remain effective when there is a significant increase in the number of resources and the number of users. The number of computers and servers in the Internet has increased dramatically. view more..
+
Ans: a firewall can be used to form a barrier around an intranet, restricting the traffic that can enter and leave, this does not deal with ensuring the appropriate use of resources by users within an intranet, or with the appropriate use of resources in the Internet, that are not protected by firewalls. view more..
+
Ans: he process that manages a shared resource could take one client request at a time. But that approach limits throughput. Therefore services and applications generally allow multiple client requests to be processed concurrently. view more..
+
Ans: oncealment from the user and the application programmer of the separation of components in a distributed system, so that the system is perceived as a whole rather than as a collection of independent components view more..
+
Ans: Reliability and security issues are critical in the design of most computer systems. The performance aspect of quality of service was originally defined in terms of responsiveness and computational throughput, but it has been redefined in terms of ability to meet timeliness guarantees, as discussed in the following paragraphs view more..
+
Ans: The Web began life at the European centre for nuclear research (CERN), Switzerland, in 1989 as a vehicle for exchanging documents between a community of physicists connected by the Internet [Berners-Lee 1999]. A key feature of the Web is that it provides a hypertext structure among the documents that it stores, reflecting the users’ requirement to organize their knowledge. view more..
+
Ans: Resource sharing is the main motivating factor for constructing distributed systems. Resources such as printers, files, web pages or database records are managed by servers of the appropriate type. For example, web servers manage web pages and other web resources. Resources are accessed by clients – for example, the clients of web servers are generally called browsers. view more..
+
Ans: Physical models consider the types of computers and devices that constitute a system and their interconnectivity, without details of specific technologies. view more..
+
Ans: The discussion and examples of Chapter 1 suggest that distributed systems of different types share important underlying properties and give rise to common design problems. In this chapter we show how the properties and design issues of distributed systems can be captured and discussed through the use of descriptive models view more..
+
Ans: A physical model is a representation of the underlying hardware elements of a distributed system that abstracts away from specific details of the computer and networking technologies employed. view more..
+
Ans: Major concerns are to make the system reliable, manageable, adaptable and cost-effective. The architectural design of a building has similar aspects – it determines not only its appearance but also its general structure and architectural style (gothic, neo-classical, modern) and provides a consistent frame of reference for the design view more..
+
Ans: From a system perspective, the answer is normally very clear in that the entities that communicate in a distributed system are typically processes, leading to the prevailing view of a distributed system as processes coupled with appropriate interprocess communication paradigms view more..
+
Ans: ion for a given problem domain. This is a large topic, and many architectural patterns have been identified for distributed systems. In this section, we present several key architectural patterns in distributed systems, including layering and tiered architectures and the related concept of thin clients (including the specific mechanism of virtual network computing). We also examine web services as an architectural pattern and give pointers to others that may be applicable in distributed systems. view more..
+
Ans: As mentioned in the introduction, networks are everywhere and underpin many everyday services that we now take for granted: the Internet and the associated World Wide Web, web search, online gaming, email, social networks, eCommerce, etc. To illustrate this point further, consider Figure 1.1 , which describes a selected range of key commercial or social application sectors highlighting some of the associated established or emerging uses of distributed systems technology. view more..
+
Ans: If another organization develops or runs a computer application for your organization, that practice is called outsourcing. Outsourcing includes a spectrum of working arrangements view more..
+
Ans: We can group organizations that produce software into six major categories. view more..
+
Ans: Once you have decided to purchase off-the-shelf software rather than write some or all of the software for your new system, how do you decide what to buy? Several criteria need consideration, and special ones may arise with each potential software purchase. view more..



Recommended Posts:


Rating - 3/5
503 views

Advertisements