Register Transfer




Computer registers are designated by capital letters (sometimes followed by numerals) to denote the function of the register. For example, the register that holds an address for the memory unit is usually called a memory address register and is designated by the name MAR. Other designations for registers are PC (for program counter), IR (for instruction register, and R 1 (for processor register). The individual flip-flops in an n-bit register are numbered in sequence from 0 through n - 1, starting from 0 in the rightmost position and increasing the numbers toward the left. Figure 4-1 shows the representation of registers in block diagram form. The most common way to represent a register is by a rectangular box with the name of the register inside, as in Fig. 4-1(a). The individual bits can be distinguished as in (b). The numbering of bits in a 16-bit register can be marked on top of the box as shown in (c). A 16-bit register is partitioned into two parts in (d). Bits 0 through 7 are assigned the symbol L (for low byte) and bits 8 through 15 are assigned the symbol H (for high byte). The name of the 16-bit register is PC . The symbol PC(0-7) or PC(L) refers to the low-order byte and PC(S-15) or PC( H) to the high-order byte.

 

 

Information transfer from one register to another is designated in symbolic form by means of a replacement operator. The statement

                              R2 <-- R1

denotes a transfer of the content of register R1 into register R2. It designates a replacement of the content of R2 by the content of Rl. By definition, the content of the source register R1 does not change after the transfer.

Register Transfer  

 

     

 

Topics You May Be Interested In
Fixed-point Representation Binary Lncrementer
Arithmetic Addition Logic Microoperations
Floating-point Representation Instruction Codes
Error Detection Codes Common Bus System-memory Address
Binary Adder Instruction Set Completeness

 

 

 

 

A statement that specifies a register transfer implies that circuits are available from the outputs of the source register to the inputs of the destination register and that the destination register has a parallel load capability. Normally, we want the transfer to occur only under a predetermined control condition. This can be shown by means of an if-then statement.



Frequently Asked Questions

+
Ans: The symbolic notation used to describe the microoperation transfers among registers is called a register transfer language. The term "register transfer" implies the availability of hardware logic circuits that can perform a stated microoperation and transfer the result of the operation to the same or another register. view more..
+
Ans: A digital system Is an interconnection of digital hardware module. that at'ClOinpl.lsh a specific Wormation-proceaslna taslc. Digital systems vary in size and complexi.ty interacting digital &om a few integrated circuits to a complex of interconnected and computers. Digital system design invariably UBeS a modular approach. The modules are constructed &om such digital components as ules registet&, are in decoders, terconnected arithmetic with common elements data and control paths , and control logic. The to fonn various moda digital computer system. view more..
+
Ans: Parity generator and checker networl<s are logic circuits constructed with exclusive-OR functions. This is because, as mentioned in Sec. 1·2, the exclusive-OR function of three or more varia.bles is by definition an odd function. An odd function is a logic function whose value is binary 1 if, and only if, an odd function number of variables are equal to 1. According to this definition, the P( even) is the exclusive-OR of x, y, and l because it is equal to 1 when either one or all three of the variables are equal to I (Table 3-7). The P(odd) function is the complement of the P(even) function. view more..
+
Ans: Computer registers are designated by capital letters (sometimes followed by numerals) to denote the function of the register. For example, the register that holds an address for the memory unit is usually called a memory address register and is designated by the name MAR. view more..
+
Ans: where P is a control signal generated in the control section. It is sometimes convenient to separate the control variables from the register transfer operation by specifying a control function. view more..
+
Ans: A typical digital computer has many registers, and paths must be provided to transfer information from one register to another. The number of wires will be excessive if separate lines are used between each register and all other registers in the system. view more..
+
Ans: The two selection lines S1 and S0 are connected to the selection inputs of all four multiplexers. The selection lines choose the four bits of one register and transfer them into the four-line common bus. When S1S0 = 00, the 0 data inputs of all four multiplexers are selected and applied to the outputs that form the bus view more..
+
Ans: A bus system can be constructed with three-state gates instead of multiplexers. A three-state gate is a digital circuit that exhibits three states. Two of the states are signals equivalent to logic 1 and 0 as in a conventional gate. The third state is a high-impedance state. view more..
+
Ans: The operation of a memory unit was described in Sec. 2-7. The transfer of information from a memory word to the outside environment is called a read operation. view more..
+
Ans: To implement the add microoperation with hardware, we need the registers that hold the data and the digital component that performs the arithmetic addition. The digital circuit that forms the arithmetic sum of two bits and a previous carry is called a full-adder . view more..
+
Ans: The subtraction of binary numbers can be done most conveniently by means of complements as discussed in Sec. 3-2. Remember that the subtraction A - B can be done by taking the 2's complement of B and adding it to A. The 2's complement can be obtained by taking the 1' s complement and adding one to the least significant pair of bits. The 1's complement can be implemented with inverters and a one can be added to the sum through the input carry. view more..
+
Ans: The increment microoperation adds one to a number in a register. For example, if a 4-bit register has a binary value 0110, it will go toO! II afterit is incremented. This microoperation is easily implemented with a binary counter view more..
+
Ans: Logic microoperations specify binary operations for strings of bits stored in registers. These operations consider each bit of the register separately and treat them as binary variables. For example, the exclusive-OR microoperation with the contents of two registers . view more..
+
Ans: There are 16 different logic operations that can be performed with two binary variables. They can be determined from all possible truth tables obtained with two binary variables as shown in Table 4-5. In this table, each of the 16 columns F0 through F15 represents a truth table of one possible Boolean function for the view more..
+
Ans: The hardware implementation of logic rnicrooperations requires that logic gates be inserted for each bit or pair of bits in the registers to perform the required logic function. Although there are 16 logic rnicrooperations, most computers use only four-AND, OR, XOR (exclusive-OR), and complementfrom which all others can be derived. view more..
+
Ans: Logic microoperations are very useful for manipulating individual bits or a portion of a word stored in a register. They can be used to change bit values, delete a group of bits, or insert new bit values into a register. view more..
+
Ans: The selective-set operation sets to 1 the bits in register A where there are corresponding 1's in register B. It does not affect bit positions that have D's in B. The following numerical example clarifies this operation. view more..
+
Ans: Shift rnicrooperations are used for serial transfer of data. They are also used in conjunction with arithmetic, logic, and other data-processing operations. The contents of a register can be shifted to the left or the right. At the same time that the bits are shifted, the first flip-flop receives its binary information from the serial input view more..




Rating - 3/5
506 views

Advertisements
hindutani bhau on mahira vs lizard