Binary Adder-Subtractor

Rating - 3/5

The subtraction of binary numbers can be done most conveniently by means of complements as discussed in Sec. 3-2. Remember that the subtraction A - B can be done by taking the 2's complement of B and adding it to A. The 2's complement can be obtained by taking the 1' s complement and adding one to the least significant pair of bits. The 1's complement can be implemented with inverters and a one can be added to the sum through the input carry.

Binary Adder-Subtractor









These Topics Are Also In Your Syllabus Binary Adder-Subtractor
1 Types of Operating Systems - Batch operating system, Time-sharing systems, Distributed OS, Network OS, Real Time OS link
2 Complements -2 link
You May Find Something Very Interesting Here. Binary Adder-Subtractor link
3 Subtraction of Unsigned Numbers link
4 Subtraction of Unsigned Numbers-2 link
5 Fixed-Point Representation link



The addition and subtraction operations can be combined into one common circuit by including an exclusive-OR gate with each full-adder. A 4-bit adder-subtractor circuit is shown in Fig. 4-7. The mode input M controls the operation. When M = 0 the circuit is an adder and when M = 1 the circuit becomes a subtractor. Each exclusive-OR gate receives input M and one of the inputs of B. When M = 0, we have B a1 0 = B. The full-adders receive the value of B, the input carry is O, and the circuit performs A plus B. When M = 1, we have B a1 1 = B' and C0 = 1. The B inputs are all complemented and a 1 is added through the input carry. The circuit performs the operation A plus the 2's complement of B. For unsigned numbers, this gives A - B if A '" B or the 2's complement of (8 - A) if A < B. For signed numbers, the result is A - B provided that there Is no overflow.

Rating - 3/5