Thrashing




Thrashing

 If the number of frames allocated to a low-priority process falls below the minimum number required by the computer architecture, we must suspend, that process's execution. We should then page out its remaining pages, freeing all its allocated frames. This provision introduces a swap-in, swap-out level of intermediate CPU scheduling. In fact, look at any process that does not have ''enough" frames. If the process does not have the number of frames it needs to support pages in active use, it will quickly page-fault. At this point, it must replace some page. However, since all its pages are in active use, it must replace a page that will be needed again right away. Consequently, it quickly faults again, and again, and again, replacing pages that it must bring back in immediately. This high paging activity is called thrashing. A process is thrashing if it is spending more time paging than executing.

Cause of Thrashing

Thrashing results in severe performance problems. Consider the following scenario, which is based on the actual behavior of early paging systems. The operating system monitors CPU utilization. If CPU utilization is too low, we increase the degree of multiprogramming by introducing a new process to the system. A global page-replacement algorithm is used; it replaces pages without regard to the process to which they belong. Now suppose that a process enters a new phase in its execution and needs more frames. It starts faulting and taking frames away from other processes. These processes need those pages, however, and so they also fault, taking frames from other processes. These faulting processes must use the paging device to swap pages in and out.

Thrashing

 As they queue up for the paging device, the ready queue empties. As processes wait for the paging device, CPU utilization decreases. The CPU scheduler sees the decreasing CPU utilization and increases the degree of multiprogramming as a result. The new process tries to get started by taking frames from running processes, causing more page faults and a longer queue for the paging device. As a result, CPU utilization drops even further, and the CPU scheduler tries to increase the degree of multiprogramming even more. Thrashing has occurred, and system throughput plunges. The pagefault rate increases tremendously As a result, the effective memory-access time increases. No work is getting done, because the processes are spending all their time paging.

This phenomenon is illustrated in Figure 9.18, in which CPU utilization is plotted against the degree of multiprogramming. As the degree of multiprogramming increases, CPU utilization also increases, although more slowly, until a maximum is reached. If the degree of multiprogramming is increased even further, thrashing sets in, and CPU utilization drops sharply. At this point, to increase CPU utilization and stop thrashing, we must decrease the degree of multi pro grammi rig.

We can limit the effects of thrashing by using a local replacement algorithm (or priority replacement algorithm). With local replacement, if one process starts thrashing, it cannot steal frames from another process and cause the latter to thrash as well. However, the problem is not entirely solved. If processes are thrashing, they will be in the queue for the paging device most of the time. The average service time for a page fault will increase because of the longer average queue for the paging device. Thus, the effective access time will increase even for a process that is not thrashing. To prevent thrashing, we must provide a process with as many frames as it needs. But how do we know how many frames it "needs'? There are several techniques.

Thrashing

The working-set strategy (Section 9.6.2) starts by looking at how many frames a process is actually using. This approach defines the locality model of process execution. The locality model states that, as a process executes, it moves from locality to locality.

Topics You May Be Interested In
Real Time Operating System System And Network Threats
Multiprocessor Systems Firewalling To Protect Systems And Networks
Operations On Process Features Of Real-time Kernels
Systems Analysis And Design: Core Concepts Implementing Real-time Operating Systems
Network Topology Programmer Interface

A locality is a set of pages that are actively used together (Figure 9.19). A program is generally composed of several different localities, which may overlap. For example, when a function is called, it defines a new locality. In this locality, memory references are made to the instructions of the function call, its local variables, and a subset of the global variables. When we exit the function, the process leaves this locality, since the local variables and instructions of the function are no longer in active use. We may return to this locality later. Thus, we see that localities are defined by the program structure and its data structures. The locality model states that all programs will exhibit this basic memory reference structure. Note that the locality model is the unstated principle behind the caching discussions so far in this book. If accesses to any types of data were random rather than patterned, caching would be useless.

Suppose we allocate enough frames to a process to accommodate its current locality. It will fault for the pages in its locality until all these pages are in memory; then, it will not fault again until it changes localities. If we allocate fewer frames than the size of the current locality, the process will thrash, since it cannot keep in memory all the pages that it is actively using.

Working-Set Mode!

As mentioned, the working-set model is based on the assumption of locality. This model uses a parameter, A, to define the working-set window. The idea is to examine the most recent A page references. The set of pages in the most recent A page references is the working set (Figure 9.20). If a page is in,active use, it will be in the working set. If it is no longer being used, it will drop from the working set A time units after its last reference. Thus, the working set is an approximation of the program's locality. For example, given the sequence of memory references shown in Figure 9.20, if A = 10 memory references, then the working set at time t\ is {1, 2, 5, 6, 7). By time h, the working set has changed to {3, 4}. The accuracy of the working set depends on the selection of A. If A is too small, it will not encompass the entire locality; if A is too large, it may overlap several localities. In the extreme, if A is infinite, the working set is the set of pages touched during the process execution.

The most important property of the working set, then, is its size. If we compute the working-set size, WSSj, for each process in the system, we can then consider that where D is the total demand for frames. Each process is actively using the pages in its working set. Thus, process i needs WSSj frames. If the total demand is greater than the total number of available frames (D > m), thrashing will occur, because some processes will not have enough frames. Once A has been selected, use of the working-set model is simple. The operating system monitors the working set of each process and allocates to that working set enough frames to provide it with its working-set size. If there are enough extra frames, another process can be initiated. If the sum of the working-set sizes increases, exceeding the total number of available frames, the operating system selects a process to suspend. The process's pages are written out (swapped), and its frames are reallocated to other processes.

Thrashing

 The suspended process can be restarted later. This working-set strategy prevents thrashing while keeping the degree of multiprogramming as high as possible. Thus, it optimizes CPU utilization. The difficulty with the working-set model is keeping track of the working set. The working-set window is a moving window. At each memory reference, a new reference appears at one end and the oldest reference drops off the other end.

A page is in the working set if it is referenced anywhere in the working-set window. We can approximate the working-set model with a fixed-interval timer interrupt and a reference bit. For example, assume that A equals 10,000 references and that we can cause a timer interrupt every 5,000 references. When we get a timer interrupt, we copy and clear the reference-bit values for each page. Thus, if a page fault occurs, we can examine the current reference bit and two in-memory bits to determine whether a page was used within the last 10,000 to 15,000 references. If it was used, at least one of these bits will be on. If it has not been used, these bits will be off. Those pages with at least one bit on will be considered to be in the working set. Note that this arrangement is not entirely accurate, because we cannot tell where, within an interval of 5,000, a reference occurred. We can reduce the uncertainty by increasing the number of history bits and the frequency of interrupts (for example, 10 bits and interrupts every 1,000 references). However, the cost to service these more frequent interrupts will be correspondingly higher.

 Page-Fault Frequency

 The working-set model is successful, and knowledge of the working set can be useful for prepaging (Section 9.9.1), but it seems a clumsy way to control thrashing. A strategy that uses the page-fault frequency (PFF) takes a more direct approach. The specific problem is how to prevent thrashing.

Topics You May Be Interested In
Process Scheduling Computer Security Classifications
Direct Memory Access Application I/o Interface
Segmentation An Example: Cineblitz
Deadlock Avoidance Atomic Transactions
Design Principles Introduction To Memory Management

Thrashing

Thrashing has a high page-fault rate. Thus, we want to control the page-fault rate. When it is too high, we know that the process needs more frames. Conversely, if the page-fault rate is too low, then the process may have too many frames. We can establish upper and lower bounds on the desired page-fault rate (Figure 9.21). If the actual page-fault rate exceeds the upper limit, we allocate the process another frame; if the page-fault rate falls below the lower limit, we remove a frame from the process. Thus, we can directly measure and control the page-fault rate to prevent thrashing. As with the working-set strategy, we may have to suspend a process. If the page-fault rate increases and no free frames are available, we must select some process and suspend it. The freed frames are then distributed to processes with high page-fault rates.

Thrashing



Frequently Asked Questions

+
Ans: Demand Paging Consider how an executable program might be loaded from disk into memory. One option is to load the entire program in physical memory at program execution time. However, a problem with this approach, is that we may not initially need the entire program in memory. Consider a program that starts with a list of available options from which the user is to select. Loading the entire program into memory results in loading the executable code for all options, regardless of whether an option is ultimately selected by the user or not. An alternative strategy is to initially load pages only as they are needed. This technique is known as demand paging and is commonly used in virtual memory systems. view more..
+
Ans: Paging is a memory-management scheme that permits the physical address space of a process to be noncontiguous. Paging avoids the considerable problem of fitting memory chunks of varying sizes onto the backing store; most memory-management schemes used before the introduction of paging suffered from this problem. The problem arises because, when some code fragments or data residing in main memory need to be swapped out, space must be found on the backing store. view more..
+
Ans: An important aspect of memory management that became unavoidable with paging is the separation of the user's view of memory and the actual physical memory. As we have already seen, the user's view of memory is not the same as the actual physical memory. The user's view is mapped onto physical memory. This mapping allows differentiation between logical memory and. physical memory. view more..
+
Ans: Thrashing If the number of frames allocated to a low-priority process falls below the minimum number required by the computer architecture, we must suspend, that process's execution. We should then page out its remaining pages, freeing all its allocated frames. This provision introduces a swap-in, swap-out level of intermediate CPU scheduling. In fact, look at any process that does not have ''enough" frames. If the process does not have the number of frames it needs to support pages in active use, it will quickly page-fault. At this point, it must replace some page. However, since all its pages are in active use, it must replace a page that will be needed again right away. Consequently, it quickly faults again, and again, and again, replacing pages that it must bring back in immediately. This high paging activity is called thrashing. A process is thrashing if it is spending more time paging than executing. view more..
+
Ans: When a process running in user mode requests additional memory, pages are allocated from the list of free page frames maintained by the kernel. This list is typically populated using a page-replacement algorithm such as those discussed in Section 9.4 and most likely contains free pages scattered throughout physical memory, as explained earlier. Remember, too, that if a user process requests a single byte of memory, internal fragmentation will result, as the process will be granted, an entire page frame. Kernel memory, however, is often allocated from a free-memory pool different from the list used to satisfy ordinary user-mode processes. view more..
+
Ans: We turn next to a description of the scheduling policies of the Solaris, Windows XP, and Linux operating systems. It is important to remember that we are describing the scheduling of kernel threads with Solaris and Linux. Recall that Linux does not distinguish between processes and threads; thus, we use the term task when discussing the Linux scheduler. view more..
+
Ans: Overview of Mass-Storage Structure In this section we present a general overview of the physical structure of secondary and tertiary storage devices view more..
+
Ans: Allocation of Frames We turn next to the issue of allocation. How do we allocate the fixed amount of free memory among the various processes? If we have 93 free frames and two processes, how many frames does each process get? The simplest case is the single-user system. Consider a single-user system with 128 KB of memory composed of pages 1 KB in size. This system has 128 frames. The operating system may take 35 KB, leaving 93 frames for the user process. Under pure demand paging, all 93 frames would initially be put on the free-frame list. When a user process started execution, it would generate a sequence of page faults. The first 93 page faults would all get free frames from the free-frame list. view more..
+
Ans: The direct-access nature of disks allows us flexibility in the implementation of files, in almost every case, many files are stored on the same disk. The main problem is how to allocate space to these files so that disk space is utilized effectively and files can be accessed quickly. Three major methods of allocating disk space are in wide use: contiguous, linked, and indexed. Each method has advantages and disadvantages. Some systems (such as Data General's RDOS for its Nova line of computers) support all three. view more..
+
Ans: Free-Space Management Since disk space is limited, we need to reuse the space from deleted files for new files, if possible. (Write-once optical disks only allow one write to any given sector, and thus such reuse is not physically possible.) To keep track of free disk space, the system maintains a free-space list. The free-space list records all free disk blocks—those not allocated to some file or directory. To create a file, we search the free-space list for the required amount of space and allocate that space to the new file. This space is then removed from the free-space list. view more..
+
Ans: File Concept Computers can store information on various storage media, such as magnetic disks, magnetic tapes, and optical disks. So that the computer system will be convenient to use, the operating system provides a uniform logical view of information storage. The operating system abstracts from the physical properties of its storage devices to define a logical storage unit, the file. Files are mapped by the operating system onto physical devices. These storage devices are usually nonvolatile, so the contents are persistent through power failures and system reboots. view more..
+
Ans: Modern disk drives are addressed as large one-dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer. The size of a logical block is usually 512 bytes, although some disks can be low-level formatted to have a different logical block size, such as 1,024 bytes. view more..
+
Ans: In the previous sections, we explored the motivation for file sharing and some of the difficulties involved in allowing users to share files. Such file sharing is very desirable for users who want to collaborate and to reduce the effort required to achieve a computing goal. Therefore, user-oriented operating systems must accommodate the need to share files in spite of the inherent difficulties. In this section, we examine more aspects of file sharing view more..
+
Ans: When information is stored in a computer system, we want to keep it safe from physical damage (reliability) and improper access (protection). Reliability is generally provided by duplicate copies of files. Many computers have systems programs that automatically (or through computer-operator intervention) copy disk files to tape at regular intervals (once per day or week or month) to maintain a copy should a file system be accidentally destroyed. view more..
+
Ans: Goal of systems analysis and design is to improve organizational systems. This process involves developing or acquiring application software and training employees. view more..
+
Ans: Disk Scheduling One of the responsibilities of the operating system is to use the hardware efficiently. For the disk drives, meeting this responsibility entails having fast access time and large disk bandwidth. The access time has two major components. The seek time is the time for the disk arm to move the heads to the cylinder containing the desired sector. The rotational latency is the additional time for the disk to rotate the desired sector to the disk head. The disk bandwidth is the total number of bytes transferred, divided by the total time between the first request for service and the completion of the last transfer. We can improve both the access time and the bandwidth by scheduling the servicing of disk I/O requests in a good order. Whenever a process needs I/O to or from the disk, it issues a system call to the operating system view more..
+
Ans: The operating system is responsible for several other aspects of disk management, too. Here we discuss disk initialization, booting from disk, and bad-block recovery. view more..
+
Ans: File-System Structure Disks provide the bulk of secondary storage on which a file system is maintained. They have two characteristics that make them a convenient medium for storing multiple files: 1. A disk can be rewritten in place; it is possible to read a block from the disk, modify the block, and write it back into the same place. 2. A disk can access directly any given block of information it contains. Thus, it is simple to access any file either sequentially or randomly, and switching from one file to another requires only moving the read-write heads and waiting for the disk to rotate. view more..




Rating - 4/5
532 views

Advertisements