Introduce the systems of units used to describe physical quantities and discuss ways to describe the accuracy of a number.

## Applications of simple Harmonic motion

So far, we’ve looked at a grand total of one situation in which simple harmonic motion (SHM) occurs: a body attached to an ideal horizontal spring. But SHM can occur in any system in which there is a restoring force that is directly proportional to the displacement from equilibrium, as given by E...

## Apparent weight and the earth’s rotation

Because the earth rotates on its axis, it is not precisely an inertial frame of reference. For this reason the apparent weight of a body on earth is not precisely equal to the earth’s gravitational attraction, which we will call the true weight w 0 of the body. Figure 13.26 is a cutaway view o...

## Kepler’s second Law

In a small time interval dt, the line from the sun S to the planet P turns through an angle du. The area swept out is the colored triangle with height r, base length r du, and area dA = 1 2 r2 du in . The rate at which area is swept out,

## Kepler’s third Law

We have already derived Kepler’s third law for the particular case of circular orbits. Equation (13.12) shows that the period of a satellite or planet in a circular orbit is proportional to the 3 2 power of the orbit radius.

## Vectors and vector addition

Some physical quantities, such as time, temperature, mass, and density, can be described completely by a single number with a unit. But many other important quantities in physics have a direction associated with them and cannot be described by a single number.

Here are some terms that we’ll use in discussing periodic motions of all kinds:

## Planetary Motions and the Center of Mass

We have assumed that as a planet or comet orbits the sun, the sun remains absolutely stationary. This can’t be correct; because the sun exerts a gravitational force on the planet, the planet exerts a gravitational force on the sun of the same magnitude but opposite direction. In fact, both the su...

## Gravitation and spherically symmetric Bodies

We have stated the law of gravitation in terms of the interaction between two particles. It turns out that the gravitational interaction of any two bodies having spherically symmetric mass distributions

## solving rigid-body equilibrium problems

There are just two key conditions for rigid-body equilibrium: The vector sum of the forces on the body must be zero, and the sum of the torques about any point must be zero. To keep things simple, we’ll restrict our attention to situations in which we can treat all forces as acting in a single pl...

## A point Mass inside a spherical shell

We assumed at the beginning that the point mass m was outside the spherical shell, so our proof is valid only when m is outside a spherically symmetric mass distribution.

## Energy in simple Harmonic motion

We can learn even more about simple harmonic motion by using energy considerations. The only horizontal force on the body in SHM in Figs. 14.2 and 14.13 is the conservative force exerted by an ideal spring. The vertical forces do no work, so the total mechanical energy of the system is conserved....

## Using and Converting Units

An equation must always be dimensional consistent. You can’t add apples and automobiles; two terms may be added or equated only if they have the same units.

## SOLVED EXAMPLES ON EQUILIBRIUM

Here are some solved examples to help your concepts to be more clear.

## absolute Pressure and Gauge Pressure

If the pressure inside a car tire is equal to atmospheric pressure, the tire is flat. The pressure has to be greater than atmospheric to support the car, so the significant quantity is the difference between the inside and outside pressures. When we say that the pressure in a car tire is “32 poun...

## viscosity

Viscosity is internal friction in a fluid. Viscous forces oppose the motion of one portion of a fluid relative to another. Viscosity is the reason it takes effort to paddle a canoe through calm water, but it is also the reason the paddle works. Viscous effects are important in the flow of fluids ...

## Turbulence

When the speed of a flowing fluid exceeds a certain critical value, the flow is no longer laminar. Instead, the flow pattern becomes extremely irregular and complex, and it changes continuously with time; there is no steady-state pattern. This irregular, chaotic flow is called turbulence

## Spherical Mass Distributions

We have stated without proof that the gravitational interaction between two spherically symmetric mass distributions is the same as though all the mass of each were concentrated at its center. Now we’re ready to prove this statement. Newton searched for a proof for several years, and he delayed p...

Any spherically symmetric mass distribution can be thought of as a combination of concentric spherical shells. Because of the principle of superposition of forces, what is true of one shell is also true of the combination. So we have proved half of what we set out to prove: that the gravitational...

## Period and amplitude in SHM

the period and frequency of simple harmonic motion are completely determined by the mass m and the force constant k. In simple harmonic motion the period and frequency do not depend on the amplitude A.

We still need to find the displacement x as a function of time for a harmonic oscillator. Equation (14.4) for a body in SHM along the x-axis is identical to Eq. (14.8) for the x-coordinate of the reference point in uniform circular motion with constant angular speed v = 2k/m

## pressure gauges

The simplest pressure gauge is the open-tube manometer . The U-shaped tube contains a liquid of density r, often mercury or water. The left end of the tube is connected to the container where the pressure p is to be measured, and the right end is open to the atmosphere

## Buoyancy

A body immersed in water seems to weigh less than when it is in air. When the body is less dense than the fluid, it floats. The human body usually floats in water, and a helium-filled balloon floats in air. These are examples of buoyancy, a phenomenon described by Archimedes’s principle:

## surface tension

We’ve seen that if an object is less dense than water, it will float partially submerged. But a paper clip can rest atop a water surface even though its density is several times that of water. This is an example of surface tension:

## The escape speed from a star

Think first about the properties of our own sun. Its mass M = 1.99 * 1030 kg and radius R = 6.96 * 108 m are much larger than those of any planet, but compared to other stars, our sun is not exceptionally massive

The first expression for escape speed in Eq. (13.29) suggests that a body of mass M will act as a black hole if its radius R is less than or equal to a certain critical radius.

The name planet comes from a Greek word meaning “wanderer,” and indeed the planets continuously change their positions in the sky relative to the background of stars. One of the great intellectual accomplishments of the 16th and 17th centuries was the threefold realization that the earth is also ...

## A visit to a Black hole

At points far from a black hole, its gravitational effects are the same as those of any normal body with the same mass. If the sun collapsed to form a black hole, the orbits of the planets would be unaffected. But things get dramatically different close to the black hole.

## stress, strain, and elastic moduLi

The rigid body is a useful idealized model, but the stretching, squeezing, and twisting of real bodies when forces are applied are often too important to ignore.

## Interpreting E, K, and U in SHM

the energy quantities E, K, and U at x = 0, x = ±A/2, and x = ±A. Figure 14.15 is a graphical display of Eq. (14.21); energy (kinetic, potential, and total) is plotted vertically and the coordinate x is plotted horizontally. The parabolic curve in Fig. 14.15a represents the potential energy U = ...