Revocation of Access Rights




Revocation of Access Rights

 In a dynamic protection system, we may sometimes need to revoke access rights to objects shared by different users. Various questions about revocation may arise:

• Immediate versus delayed. Does revocation occur immediately/ or is it delayed? If revocation is delayed, can we find out when it will take place?

• Selective versus general. When an access right to an object is revoked, does it affect all the users who have an access right to that object, or can we specify a select group of users whose access rights should be revoked?

Revocation of Access Rights

 • Partial versus total. Can a subset of the rights associated with an object be revoked, or must we revoke all access rights for this object?

• Temporary versus permanent. Can access be revoked permanently (that is, the revoked access right will never again be available), or can access be revoked and later be obtained again? With an access-list scheme, revocation is easy.

The access list is searched for any access rights to be revoked, and they are deleted from the list. Revocation is immediate and can be general or selective, total or partial, and permanent or temporary. Capabilities, however, present a much more difficult revocation problem. Since the capabilities are distributed throughout the system, we must find them before we can revoke them. Schemes that implement revocation for capabilities include the following:

• Reacquisition. Periodically, capabilities are deleted from each domain. If a process wants to use a capability, it may find that that capability has been deleted. The process may then try to reacquire the capability. If access has been revoked, the process will not be able to reacquire the capability.

• Back-pointers. A list of pointers is maintained with each object, pointing to all capabilities associated with that object. When revocation is required, we can follow these pointers, changing the capabilities as necessaryy. This scheme was adopted in the MULTICS system. It is quite general, but its implementation is costly.

• Indirection. The capabilities point indirectly, not directly, to the objects. Each capability points to a unique entry in a global table, which in turn points to the object. We implement revocation by searching the global table for the desired entry and deleting it. Then, when an access is attempted, the capability is found to point to an illegal table entry.

 Table entries can be reused for other capabilities without difficulty, since both the capability and the table entry contain the unique name of the object. The object for a 14.8 Capability-Based Systems 547 capability and its table entry must match. This scheme was adopted in the CAL system. It does not allow selective revocation. Keys. A key is a unique bit pattern that can be associated with a capability. Tliis key is defined when the capability is created, and it can be neither modified nor inspected by the process owning the capability.

 A master key is associated with each object; it can be defined or replaced with the set-key operation. When a capability is created, the current value of the master key is associated with the capability. When the capability is exercised, its key is compared with the master key. If the keys match, the operation is allowed to continue; otherwise, an exception condition is raised.

 Revocation replaces the master key with a new value via the set-key operation, invalidating all previous capabilities for this object. This scheme does not allowr selective revocation, since only one master key is associated with each object. If we associate a list of keys with each object, then selective revocation can be implemented.

Finally, we can group all keys into one global table of keys. A capability is valid only if its key matches some key in the global table. We implement revocation by removing the matching key from the table. With this scheme, a key can be associated with several objects, and several keys can be associated with each object, providing maximum flexibility. In key-based schemes, the operations of defining keys, inserting them into lists, and deleting them from lists should not be available to all users. In particular, it would be reasonable to allow only the owner of an object to set the keys for that object. This choice, however, is a policy decision that the protection system can implement but should not define.



Frequently Asked Questions

+
Ans: Network Topology The sites in a distributed system can be connected physically in a variety of ways. Each configuration has advantages and disadvantages. We can compare the configurations by using the following criteria: • Installation cost. The cost of physically linking the sites in the system • Communication cost. The cost in time and money to send a message from site A to site B 16.4 Network Topology 621 • Availability. The extent to which data can be accessed despite the failure of some links or sites view more..
+
Ans: Network Structure There are basically two types of networks: local-area networks (LAN) and wide-area networks (WAN). The main difference between the two is the way in which they are geographically distributed. Local-area networks are composed of processors distributed over small areas (such as a single building? or a number of adjacent buildings), whereas wide-area networks are composed of a number of autonomous processors distributed over a large area (such as the United States). These differences imply major variations in the speed and reliability of the communications network, and they are reflected in the distributed operating-system design. view more..
+
Ans: Example: The WAFL File System Disk I/O has a huge impact on system performance. As a result, file-system design and implementation command quite a lot of attention from system designers. Some file systems are general purpose, in that they can provide reasonable performance and functionality for a wide variety of file sizes, file types, and I/O loads. Others are optimized for specific tasks in an attempt to provide better performance in those areas than general-purpose file systems. view more..
+
Ans: Revocation of Access Rights In a dynamic protection system, we may sometimes need to revoke access rights to objects shared by different users view more..
+
Ans: We survey two capability-based protection systems. These systems vary in their complexity and in the types of policies that can be implemented on them. Neither system is widely used, but they are interesting proving grounds for protection theories view more..
+
Ans: Robustness A distributed system may suffer from various types of hardware failure. The failure of a link, the failure of a site, and the loss of a message are the most common types. To ensure that the system is robust, we must detect any of these failures, reconfigure the system so that computation can continue, and recover when a site or a link is repaired. view more..
+
Ans: Design Issues Making the multiplicity of processors and storage devices transparent to the users has been a key challenge to many designers. Ideally, a distributed system should look to its users like a conventional, centralized system. The1 user interface of a transparent distributed system should not distinguish between local and remote resources. That is, users should be able to access remote resources as though these resources were local, and the distributed system should be responsible for locating the resources and for arranging for the appropriate interaction. view more..
+
Ans: Design Principles Microsoft's design goals for Windows XP include security, reliability, Windows and POSIX application compatibility, high performance, extensibility, portability, and international support. view more..
+
Ans: Input and Output To the user, the I/O system in Linux looks much like that in any UNIX system. That is, to the extent possible, all device drivers appear as normal files. A user can open an access channel to a device in the same way she opens any other file—devices can appear as objects within the file system. The system administrator can create special files within a file system that contain references to a specific device driver, and a user opening such a file will be able to read from and write to the device referenced. By using the normal file-protection system, which determines who can access which file, the administrator can set access permissions for each device. Linux splits all devices into three classes: block devices, character devices, and network devices. view more..
+
Ans: Communication Protocols When we are designing a communication network, we must deal with the inherent complexity of coordinating asynchronous operations communicating in a potentially slow and error-prone environment. In addition, the systems on the network must agree on a protocol or a set of protocols for determining host names, locating hosts on the network, establishing connections, and so on. view more..
+
Ans: Naming and Transparency Naming is a mapping between logical and physical objects. For instance, users deal with logical data objects represented by file names, whereas the system manipulates physical blocks of data stored on disk tracks. Usually, a user refers to a file by a textual name. view more..
+
Ans: Stateful Versus Stateless Service There are two approaches for storing server-side information when a client accesses remote files: Either the server tracks each file being accessed byeach client, or it simply provides blocks as they are requested by the client without knowledge of how those blocks are used. In the former case, the service provided is stateful; in the latter case, it is stateless. view more..
+
Ans: Computer-Security Classifications The U.S. Department of Defense Trusted Computer System Evaluation Criteria specify four security classifications in systems: A, B, C, and D. This specification is widely used to determine the security of a facility and to model security solutions, so we explore it here. The lowest-level classification is division D, or minimal protection. Division D includes only one class and is used for systems that have failed to meet the requirements of any of the other security classes. For instance, MS-DOS and Windows 3.1 are in division D. Division C, the next level of security, provides discretionary protection and accountability of users and their actions through the use of audit capabilities. view more..
+
Ans: An Example: Windows XP Microsoft Windows XP is a general-purpose operating system designed to support a variety of security features and methods. In this section, we examine features that Windows XP uses to perform security functions. For more information and background on Windows XP, see Chapter 22. The Windows XP security model is based on the notion of user accounts. Windows XP allows the creation of any number of user accounts, which can be grouped in any manner. Access to system objects can then be permitted or denied as desired. Users are identified to the system by a unique security ID. When a user logs on, Windows XP creates a security access token that includes the security ID for the user, security IDs for any groups of which the user is a member, and a list of any special privileges that the user has. view more..
+
Ans: An Example: Networking We now return to the name-resolution issue raised in Section 16.5.1 and examine its operation with respect to the TCP/IP protocol stack on the Internet. We consider the processing needed to transfer a packet between hosts on different Ethernet networks. In a TCP/IP network, every host has a name and an associated 32-bit Internet number (or host-id). view more..
+
Ans: Application I/O interface In this section, we discuss structuring techniques and interfaces for the operating system that enable I/O devices to be treated in a standard, uniform way. We explain, for instance, how an application can open a file on a disk without knowing what kind of disk it is and how new disks and other devices can be added to a computer without disruption of the operating system. Like other complex software-engineering problems, the approach here involves abstraction, encapsulation, and software layering. Specifically we can abstract away the detailed differences in I/O devices by identifying a fewgeneral kinds. Each general kind is accessed through a standardized set of functions—an interface. The differences are encapsulated in kernel modules called device drivers that internally are custom-tailored to each device but that export one of the standard interfaces. view more..
+
Ans: Transforming I/O Requests to Hardware Operations Earlier, we described the handshaking between a device driver and a device controller, but we did not explain how the operating system connects an application request to a set of network wires or to a specific disk sector. Let's consider the example of reading a file from disk. The application refers to the data by a file name. Within a disk, the file system maps from the file name through the file-system directories to obtain the space allocation of the file. For instance, in MS-DOS, the name maps to a number that indicates an entry in the file-access table, and that table entry tells which disk blocks are allocated to the file. In UNIX, the name maps to an inode number, and the corresponding inode contains the space-allocation information. How is the connection made from the file name to the disk controller (the hardware port address or the memory-mapped controller registers)? First, we consider MS-DOS, a relatively simple operating system. The first part of an MS-DOS file name, preceding the colon, is a string that identifies a specific hardware device. For example, c: is the first part of every file name on the primary hard disk view more..
+
Ans: STREAMS UNIX System V has an interesting mechanism, called STREAMS, that enables an application to assemble pipelines of driver code dynamically. A stream is a full-duplex connection between a device driver and a user-level process. It consists of a stream head that interfaces with the user process, a driver end that controls the device, and zero or more stream modules between them. view more..




Rating - 4/5
517 views

Advertisements